

Contact Update in Gear Box Simulation

Karel Dráždil ZF Engineering Pilsen | the Czech Republic

PERMAS Users' Conference in Stuttgart 2018

Agenda

01 Introduction and Background

- ZF Group
- Gear Box ERC

02 Model Description and Motivation

- Model Description
- Split Gear
- Contact Geometry Update (CAU)

03 Contact Update Simulation

- Contacts in Stage 03 without / with modification for CAU
- Customizing of Contacts for CAU
- Settings of CAU Simulation

04 Summary and Discussion

01 Introduction and Background

......

ZF Group [1]

- The leading global technology group in driveline and chassis technology as well as active and passive safety technology
- The second largest automotive supplier in the world
- Founded: 1915

- The headquarters: Friedrichshafen, Germany
- 230 locations in 40 countries and 20 main development locations

Contact Update in Gear Box Simulation | Karel Dráždil

Gear Box – Electromechanical Roll Control – ERC

Gear Box – Electromechanical Roll Control – ERC

- ERC is an electromechanical active roll bar
- The system works against vehicle rolling motions (torque applied to the stabilizing arms)
- Major components: an electric motor, a planetary gear and the integrated Electronic Control Unit (ECU)
- ERC provides additional safety functions, comfort features and improvement of vehicle dynamics

Safety and dynamics in a curve

without ERC

with ERC

Safety and comfort under unilateral stimulation

without ERC

Cooperation ZF Friedrichshafen and ZF Engineering Pilsen

02 Model Description and Motivation

Model Description

SubModel Boundary conditions and application of Torque

Stage 03 and Split Gear

• 4 Planets with Needle Roller Bearing

• The implementation of Springs between Planets

• Split Gear

Spring (the 1st version)

Split Gear functionality and Motivation

Contact Update in Gear Box Simulation | Karel Dráždil

Clicking Noise

Less Noise

Clearances on teeth

Changing of torque direction (very often)

• Stage 03 with Split Gears

- The implementation of Springs between Planets
- Contact forces on both sides of teeth
- No clearances on teeth

Stage 03 without Split Gears

Motivation of using CAU

- The application of Split Gears with Springs
- Assembly process should be considered (Pretension of Springs)
- Contact Geometry Update (CAU)

Contact Geometry Update (CAU) [3]

• Without contact geometry update

- The contact pairs are:
 - Determined once in the initial undeformed state
 - Kept <u>constant</u> over all time steps

• With contact geometry update

- The contact geometry is updated at each time step according to the observed deformation
- The <u>final</u> displacement status of previous time step is used as a <u>reference</u> displacement status for next time step → CA Geometry Update Loop (Core contact iteration)

• When to use contact geometry update

- If the change of the contact direction appears
- If the different contact pairing in deformed state is considered (the pretension of the Springs between Split Gears)

03 Contact Update Simulation

......

Contact Update Simulation Contacts in Stage 3 without modification for CAU

Contact Surface to Surface is used on contact flanks of the teeth

Contact Update Simulation

Contacts in Stage 3 without modification for CAU

Split Gear

The spring inside of the Split Gear is in contact on the whole surface with surroundings parts (Contact **Surface to Surface**)

Contact Update Simulation Modification for CAU

- What is updated [3]
 - Contact pairs in contact definition Surface to Surface / Node / etc.
 - Contact system (components of contact forces) of contact definition Surface to Surface / Node / etc.
- What is NOT updated [3]
 - Contact pairs in contact definitions Node to Node

- Additional information of CAU simulation [3]
 - New search of neighboring contact pairs and contact consolidation
 - Rebuilding flexibility matrix
 - Repetition of contact iteration

Target

To reduce the type of contact Surface to Surface / Node to the type of contact Node to Node

Contact Update Simulation Customizing of Contacts for CAU

Model without modification for CAU

Model with modification for CAU

Contact Update Simulation Customizing of Contacts for CAU

Planetary Gear Set

Reduction of Contact Surface to Node

Contact **Surface to Surface** on the Spring inside of the Split Gear and on the contact flanks of the teeth have to be **preserved**

Contact Update in Gear Box Simulation | Karel Dráždil

Settings of CAU Simulation

• UCI-file setting [3]

SET CAMAXGEOUP = -1

- < 0
 No CAU
- = 0 CAU only once after each time step
- > 0 Maximal updated steps for each time step given by user

SET CATOLGEOUP = 0.01

CAMAXGEOUP

• Increasing the maximal value of updated steps to reach the status of **convergence** of CAU

NLLOAD table (simplified)

LPAT/TIME	0.0	0.5	1.0
Contact	1.0	1.0	1.0
Pretension	0.0	1.0	1.0
Torque	0.0	0.0	1.0

• CAMAXGEOUP + NLRESULTS

- DAT-file settings (example):
 - NLRESULTS STEPS = EQUI
 0.0 0.5 0.1
- More time steps → very long computation time

CAMAXGEOUP = 10 → All time steps **converged**

04 Summary and Discussion

......

Summary

	Model without CAU	Model with CAU
Number of Elements	~ 3.4 million	
Number of Nodes	~ 4.5 million	
CA-DOFs	~ 180 000	~ 135 000
CAMAXGEOUP	= -1	= 10
Computation Time	~ 2 hours	~ 8 hours

.....

Contact Update in Gear Box Simulation | Karel Dráždil

Thank you for your attention

References

[1] https://www.zf.com/corporate/en_de/homepage/homepage.html

[2] https://www.zf.com/corporate/en_de/products/product_range/cars/cars_erc_electromechanical_roll_control.shtml

[3] PERMAS User's Reference Manual, INTES Publication No. 450

