

Making PERMAS model assembly effective by *VisPER*

Ove Sommer, Roland Ernst and Michael Klein

INTES GmbH, Stuttgart, Germany

Motivation and Target

Overview

- Process: Model Assembly
- Example Structure: Differential
- 1. Add Missing Shaft
- 2. Replace Initial Shaft by New Design
- 3. Replace Initial Case by New Design
- Conclusion

Motivation

- Ongoing pressure to accelerate development processes.
- Model assembly is a bottle neck in FEM modeling.
- PERMAS is a tool for FEM specialists: FEM model complexity is high.
- High number of model variants during development is very typical.
- Replacement of model part to create new variant of assembly is time consuming (working time).

>Better assembly solutions for complex FEM models demanded!

Motivation + Target

- Acceleration of
 - complex (error-prone),
 - Frequent, and
 - manual processes of model assembly.
- Save
 - working time,
 - man power,
 - Attempts, and
 - money!

Process: Model Assembly

- VisPER has finished his "start-up" phase, considerable physical modeling functionality is available.
- Several Wizards for simplification of complex inputs are available.
- Next step: New level for basic modeling functionality.
- First: Model Assembly!
- Requirements:
 - Acceleration of process
 - Recover of existent coupling
 - Replace slow manual error prone process with a guided semi automatic fail safe fast process driven by user with visual feedback
 - Cover complexity of todays models (assemblies)
 - Ensure a consistent model

- File \rightarrow Export \rightarrow New Items [Clear new items after export]
 - clever separation of new created items in new file
 - + original model remains unchanged
 - + stepswise, with the option to clear the buffer
 - - only additive
- File \rightarrow Export \rightarrow Selected Items
 - systematic export of items
 - + free separation of parts, variants, situations, materials, ...
- Relabeling for elements, nodes and local systems
- 📝 Referencing presents data dependencies in a tree view
- Selection methods complete, fast and with least clicks

Missing general features in *VisPER* up to V5 that we have added now:

- Positioning (so far in SubWizard)
- Multi Read

New unique features are required to lift functionality to new level:

- Assembly process integration
- Re-use of physical coupling
- Reconnect
- Keep model integrity

Differential - Model Overview

1. Add Missing Shaft

- Add new mesh to complete the assembly
- Automatic relabeling for conflicting IDs
 - Several relabel policies available
- Optional positioning
 - to correct misalignment, wrong direction, different origin, ...
- Extensive functionality to create connections
 - MPCs,
 - Contact,
 - Pretension,
 - Pressfit,
 - ...

Effective Assembly by VisPER

Shaft: Referencing

- *VisPER* knows the context of selection
- Visualization by "Context" button
- Check model and definitions in the most natural way
- Classic check, e.g. check all surfaces/contacts, sets, ..., also available

Referencing	?
- Referencing Tree	- + '
Name	Number
17575 ELEMENTs of "KOMPO_1" refed by:	17575
▼ 3 CONTACTS ["SHAFT_DIFF", "SHAFT_PGMY", "SHAFT_PGPY SurfaceContact "SHAFT_DIFF" in Constraint "C_01" SurfaceContact "SHAFT_PGMY" in Constraint "C_01" SurfaceContact "SHAFT_PGMY" in Constraint "C_01"	"] 3
 SurfaceContact "SHAF1_PGPY" in Constraint "C_01" ✓ 3 CONTACT LOADs in Loading "L_01" 	3
▼ 2 ESETS ["SHAFT", "ELEMDISP"] "SHAFT" "ELEMDISP"	2
▼ 2 ELPROPS [(1062349,1079923)] "SHAFT" GEODAT="G_SHAFT" in System "NSV" "SHAFT" MATERIAI ="MAT_OTHERS" in System "NSV"	2
 3 MPCs ISURFACE (DISP) [200,201,202] MPC ISURFACE 200: DISP MPC ISURFACE 201: DISP MPC ISURFACE 202: DISP 	3
2 SURFACEs [141,152]	2
SURFACE 141 SURFACE 152	
 2 SFSETs ["SHAFT_1B", "SHAFT_2B"] "SHAFT_1B" "SHAFT_2B" 	2
28724 Nodes refed by 17575 elements and:	28724
Context Select Lo	ook at
Close	

10

2. Replace Initial Shaft by New Design

• AssemblyWizard guides through the complete replace process. • Important Functionalities: Recover existing physical connections Different mesh • Manage replaced and Different element type imported part simultaneously during Different geometry • replace step Recover existing sets • Fit surfaces to new geometry • Relabel IDs, but use of same label range is possible Keep model consistent Undo possibility

new model geometries

• Reconnect Surfaces:

Tolerances for systematic selection

Automatic recover surfaces based on

- Manual modification of surfaces (optional)
- Re-use of same surface labels
- Automatic re-use of new surfaces for existing connections, e.g. contact definitions

3. Replace Initial Case by New Design

- More challenging task: replacement of differential case
- Physical connections:
 - Contact to rings, washer and gears
 - Contact to shaft
 - MPC coupling to bearings and ring gear
 - 4 MPC couplings to nuts
 - 4 Pretension definitions to bolts
 - 2 node based MPC couplings (bolts)

Reconnect Nodes

- Reconnect Nodes:
 - Automatic search of node partner between both variants
 - Tolerances for systematic selection
 - Optional exclusive selection of type:
 - boundary or inner nodes, and accordingly
 - corner or mid nodes.
 - Node type-sustaining
 - Manual connection of nodes (optional)
 - Re-use of same node labels

Highlight of nodes for which new connections were found at new part

Effective Assembly by VisPER

More Examples for Reconnections

PERMAS Users' Conference, April 2018

Process Comparison

Comparison of process time for replacement of model part

- Not included are time savings from:
 - less mistakes,
 - better overview and
 - better checking in VisPER!

- Additional Remarks:
 - Automatization by Python-scripts available,
 - Work time saving for each replacement and
 - Maschine time saving by using of 'CASO' for • **PERMAS run of variants**

Conclusion

- Drastic acceleration of assembly process
- Reduction of errors during assembly
- No dull redefinition work
- Prepared for complex FEM-models from specialists
- Automatisms for nearly every physical connection
- Complete user-control of reconnection possible
- Checking during replacement with VisPER management of old and new model part at the same time