PERMAS USERS' Conference 12.04.2018 – 13.04.2018

KRAUSI

INTES

UNIVERSITÄT PADERBORN Hirschvogel Automotive Group

= EDAG

OptiAMix

Multi-target-optimized product design for additive manufacturing

Software-assisted design check of additive manufactured components

University of Paderborn

Chair for Design and Drive Technology // DMRC Johannes Tominski

Stuttgart

Agenda

GEFÖRDERT VOR Bundesminis für Bildung

OAdditive Manufacturing

ODesign-Guidelines for Additive Manufacturing

Oldentification of standard-elements

ODatabase for reference values

OProcedure for checking the component shape

OSummary

2

Additive manufacturing Procedure

Structure of components

- Components are build layer-by-layer
- Layers are oriented in x-y-direction
- Joining layers in z-direction

Structure of component-layers

- Contourlines: Limitation of the outer expansion
- Rasterlines: Filling of the Areas between the contourlines

GEFÖRDERT VON

Bundesministe

12. April 2018

Additive manufacturing Procedure

GEFÖRDERT VOM

Bundesministeriun für Bildung

Additive manufacturing Potentials and benefits

Undercuts

- · Accessibility for tools is not required
- Undercuts arise in
 - layer direction
 - building direction

Internal structures

Example: conformal cooling

Truss structures

INTES

UNIVERSITÄT PADERBORN

(RAUS

 Complex arrangements of beams and bars

Manufacturing of form fitted elements

Hirschvogel Automotive Group

二 EDAG

Production without mounting

5

Additive manufacturing Potentials and benefits

Topology optimized structures

KRAUSE

INTES

UNIVERSITÄT PADERBORN Hirschvogel Automotive Group

三 EDAG

res		-	
4			
	Ŷ.		•

	Milling	Additive	Change
weight	1114g	456g	- 60%
max. deformation	0,076mm	0,048mm	- 37%
1. eigenfrequency	180 Hz	216 Hz	+ 20%
number of parts	4	2	- 50%
buy-to-fly-ratio	56 kg	0,84 kg	- 97%
production time (4 brackets)	180 h	120h	- 33%
costs	8000€	3800€	- 53%

[Rei15]

Design-guideline example: Corners

Regular description Specific description	Unsuitable design	Suitable design	LS	ΓM	FDM
Corners that form an vertical extreme point should be blunted parallel to the building plane. The dimensions of the blunted area should be larger than the thickness of a wall.			x	X	x

- Minimal dimensions limited by the size of the lines of the part layer.
- Thickenings arise at the corners

Hirschvogel Automotive Group

EDAG

INTES

UNIVERSITÄT PADERBORN

- Avoid the thickenings due to chamfers
- Chamfers can be manufactured more easily if they are parallel to the building plane.

Corners with sharp nominal shapes:

[ZA13]

GEFÖRDERT VON

Bundesministe für Bildung

Design-guidelines for Additive Manufacturing

Actual design-guidelines

- The design-guidelines are addressed to the designer
- Guidelines refer to standard elements

Standard-geometries in design

In the design process, standard elements are geometric elements that are frequently used in recurring form.

Difficult identification of design-standardgeometries, especially at topologyoptimized structures

W Kemper

INTES

UNIVERSITÄT

Hirschvogel Automotive Group

DAG

Redefinition of standard-elements for the software-based, automatic component description is necessary

Identification of geometric attributes

Requirements for standard-elements

- Geometric attributes limit the additive manufacturing
- Design-guidelines consider these procedure-specific limits
- A method needed to identify the geometric attributes that limit the feasibility
- Method must be independent of specific CAD- and preprocessing-software
- Use of the STL-fileformat that exists between CAD and manufacturing machine

GEFÖRDERT VOM

für Bildung und Forschung

SptiAMix

Identification of geometric attributes

Standard-elements in STL-Format

The triangles in STL-format contain information about the position in space and the orientation of body surfaces.

Core attributes:

- Position of triangles
- Orientation

Z. (\mathbf{X}_2) $= \begin{vmatrix} \mathbf{y}_2 \\ \mathbf{z}_2 \end{vmatrix}$

Derived attributes:

INTES

UNIVERSITÄT PADERBORN

Distance (e.g., wall thickness, gaps, length)

Hirschvogel utomotive Group

EDAG

- Angle (e.g., orientation of area in the building-room)
- Areas (e.g., cross sectional area in the building-area)

Database for reference values

General requirements for a database

- Design-guidelines contain the limiting geometries with the attributes of STL-triangles
- Include the permissible attribute values for best possible additive manufacturing
- Electronically processable

Design-guidelines (z.B. [Ada15], [VDI3405])

- During the design process, the values serve as orientation for the designer
- Specified, quantitative values are machine- and material-dependent
- Description based on standard-geometries or example parts

Conclusion

- Actual guidelines must be brought to a uniform format
- Consideration of machine and material parameters necessary

💓 ptiAMix

[VDI3405-3]

■[...]

 Wemper
 INTES
 Hirschvogel

 Automotive Group
 Minutersität
 EDAG

Research und priorization

- List of existing design-guidelines (about 100)
- Reduction of criteria through combination and priorization of the design-guidelines

Elementhyp +	feycityp *	Regel LM	nicht fertigungsgerecht	tetigungsgerecht v	Auster	Priorität v	Quervenvels	Quescinitosfiicle xy- Ebene	Normalenvektor der Dreiecke zur Bauptattform	Abstand Punkte	denekangen v	Quele
	Nataralan Gulungan	e	A.	A	Quanationalista es las Desejanges gallas 29 met desta como das for allaborarg	1	123	*			Prüfen, wie tuldstige Querschnittsfläche vergrößert werden kann	(4813)
Aggregierte Strukturen	Questionstate	48		En .	Garstetsfilse eine Roseinegosi i kan beigen Romaton Brengvarfan: Normador Gaestetsfilse fo Körnatonopot eise kaledi	4	K29, 847	i.				(Adq15)
	fundamente	51			Terdimente missen eine ausrechende Stabilitik edweisen (Annekurg fam Große Zoehlange iber Fundamente vermeider -> Upgefeht)	1	145	Ţ.		÷	Schwarpunit möglichst valt unten anordnen (Frühörper nicht rotwerdig)	[Ada 25]
	Oberfächensistel	ы		R	Wood on Classificities, danach were niger, nitzang giller (V ann	2	8,55		×		R45 und R52 obgeleithen und priorisiesse	[Am 11]
	SUCTOR	53		E.	Sources, an Assource of Stellars as Normal to grading write	3	64, 545			x		[86935]
	Harizantzie deprierte	AL	Ļн	Lunw	Vernellung om holantal av Sauglachom angeocheten Zenenter, um einnenkladete Egorapamorger av reducioner.	4						(04535)

Priorization of design-guidelines

Priority	Definition
1	Risks for the manufacturing process
2	Loss of component quality
3	Determination by the user / no influence on manufacturability or quality
4	Contained in other guidelines

Database for reference values

Experimental investigation / Abstraction

- Examination of further similarities / same causes of deviation in form
- Check of validity to other geometries
- Creation of further guidelines, that are of a more general character

Considered attributes

- Minimum wallthickness
- Minimum gap
- Minimum innerradius
- Maximum innerradius (without support)
- Minimum outerradius
- Variation of cross sectional area in building direction
- Maximum cross sectional area
- Minimum overhang angle (without support)
- Criterion of stability while manufacturing process

9 guidelines,

for a

software-based check

of the component geometry

Structure of the database

The database has to distinguish between different boundary conditions:

- Type of guideline (1. level)
- Material (2. level)
- Production machine (3. level)
- Parameter set (4. level)

Benefits:

- Expandable on all levels
- Implementation in MS Excel possible

OptiAMix

GEFÖRDERT VOM Bundesministeriu für Bildung

Procedure for checking the component shape

Angle

- Permissible overhang angle without support
- Directly available from the surface orientation of the triangles

Areas

- Cross sectional areas and their change in building direction
- Discretization in building direction (*z*-direction) with discretization parameter: $h: A(z) \approx A(i \cdot h)$
- Extraction of closed polylines (plane polygones) from intersection of plane $z = i \cdot h$ and 3D triangular mesh of the surface (i.e., area calculation analytically possible)
- Linking of connected* patches in z-direction via directed graph

*Non-empty intersection of two directly superimposed subareas

OptiAMix

12. April 2018

16

Bundesminister für Bildung und Forschung

Procedure for checking the component shape

Distances

₩ Kemper

INTES

UNIVERSITÄT

Hirschvogel Automotive Group

DAG

- Inner- and outerradii, wall thickness, gaps, etc.
- Basis: Media Axes Transformation
 - Maximale circles: circles that are completely in one area and that are not covered by any othe circle that is also completely within the area
 (3D: maximum great ball in the volume)
 - Media Axes: The set of centers of all maximum circles (3D: medial area)
- The radii of the maximum circles are the attributes to be measured and *tangetially* touch the edge or the surface at two points
- Also for the measurement of cavaties (e.g., gaps)

OptiAMix

Maximum circles with 2,3 or infitely many points of contact and medial axes inside or outside

GEFÖRDERT VOM

Procedure for checking the component shape

Distances

₩ Kemper

INTES

Hirschvogel utomotive Group

DAG

Shortest distance d_R to the edge (2D) or to the surface (3D) as a distance field by solving the

Eikonal equation : $||\nabla d_R|| = 1$

With the boundary condition $d_R = 0$ at the edge or at the surface (corresponds to wave expansion with velocity '1')

- Numerical solution on rectangular grid and extraction of the medial axis / area of singularities (coincidence of waves of different directions)
- Calculation of the shortest distances d_M to the medial axis or surface by solving the Eikonal equation again with boudary condition $d_M = 0$ on the medial axis / area and evaluation on edge or surface

Summary

Additive Manufacturing

offers the potential to produce structures that are difficult or impossible to produce using conventional manufacturing methods.

Actual design guidelines for additive manufacturing

are addressed to the designer and refer to standard geometries that are difficult to identify especially at high complex structures.

DMRC

OptiAMix

The STL-Format

usually exists between CAD and production machine. It offers the possibility to identify different geometric attributes by systematically linking the triangles.

für Bildung und Forschung

Summary

The Database

includes reference values that are necessary for a robust manufacturing. There is a distinction between different rules, machines, materials and parameter sets.

The automated design check

can be realized by different methods to get all necessary geometric attributes that have an influence on manufacturing quality.

Guideline-Nr Name Attribute Unit Priority wall thickness - minimum mm 1 t_{w0.lim} 1 dap - minimum mm W_{g90,lin} 1 nnerradius - minimum mm . i 0 lim 2 nnerradius - support mm 1 outerradius - minimum mm o,90,min variation of cross section 2 1 7 cross sectional area - maximum (rectangular) mm² A_{c.lim} 8 overhang - support mm 2 9 Stability 1

Conclusion

By reducing the number of design guidelines and identifying the restrictive geometric sizes in a STL format, it is *possible to test a design for manufacturability and manufacturing quality before production*.

A special additional benefit arises from the *check of complex structures*, such as topology-optimized structures, which is not possible with previous methods.

Thank you for your attention

- [Ada13] ADAM, G. A. O.: *Die Potentiale additiver Fertigung nutzen Praktische Hinweise für eine optimale Konstruktion.* Vortrag, 12. Rapid Prototyping Fachtagung, Hamburg, 19.04.2013
- [Ada15] ADAM, G. A. O.: Systematische Erarbeitung von Konstruktionsregeln für die additiven Fertigungsverfahren Lasersintern, Laserschmelzen und Fused Deposition Modeling. Dissertation, Universität Paderborn, 2015
- [LAL+15] LIENEKE, T.; ET AL: Entwicklung einer Methode zur systematischen Erarbeitung von Maßtoleranzen für additive Fertigungsverfahren. Vortrag, Rapid.Tech Konferenz, Erfurt, 11.06.2015
- [Rei15] REIHER, T: *FE-optimization and design of additive manufactured structural metallic parts for telecommunication satellites.* Vortrag, Paris Space Week, Paris, 05.02.2015
- [Tho09] THOMAS, D.: *The Development of Design Rules for Selective Laser Melting*. Dissertation, University of Wales Institute, Cardiff, 2009
- [VDI3405-3] VEREIN DEUTSCHER INGENIEURE E.V.: VDI 3405 Blatt 3: Additive Fertigungsverfahren – Konstruktionsempfehlungen für die Bauteilfertigung mit Laser-Sintern und Laser-Strahlschmelzen. Beuth Verlag, Berlin, 2015

W Kemper

INTES

UNIVERSITÄT

Hirschvogel Automotive Group

[ZA13] ZIMMER, D.; ADAM, G.A.O.: *Konstruktionsregeln für Additive Fertigungsverfahren*. Zeitschrift Konstruktion, Ausgabe 07/08, Springer Verlag, S.77-82, 2013 Johannes Tominski, M.Sc. (Speaker) Stefan Lammers, M.Sc. (Co-author)

johannes.tominski@uni-paderborn.de stefan.lammers@uni-paderborn.de

Chair of design and drive technology Faculty of mechanical engineering Prof. Dr.-Ing. Detmar Zimmer

SEFÖRDERT VOR

Bundesministeri für Bildung