

Modal correlation of a brake caliper – boundary conditions optimization

Zdeněk Podzemný, Porsche Engineering Services

Sergio Carvajal, Porsche AG

Table of Contents

- 1. Introduction
- 2. Measurement and simulation setup
- 3. Modal correlation
- 4. Optimization of boundary conditions
- 5. Modal shapes selected
- 6. Summary

1.1 Introduction

- > Modal correlation of brake components is essential part of complex NVH simulations.
- > In order to have reliable simulation results modal properties of every component have to be examined carefully and compared with measured data.
- > Modal assurance criterion (MAC) is being widely used to determine a measure of linear dependency between two eigenvectors.
- > Usually the standard correlation procedure consists of the following points:
 - Eigenvectors produced by FEM simulation are compared with experimentally determined eigenvectors using MAC.
 - In case MAC values show a poor correlation the simulation model has to be updated in order to describe the modal parameters properly.
 - Finally, the updated model is examined and subsequently an optimization of some of the model parameters can be done.
- > We put effort into proper definition of the following properties:
 - Material properties, connections in the model, boundary conditions if necessary.

> Only a properly correlated model can produce reliable results.

2.1 Measurement and simulation setup

Measurement

- > The brake caliper is mounted on a steering knuckle, which is fully constrained in a clamping device.
- > The steering knuckle is clamped near the suspension strut mounts.
- Experimental modal analysis (EMA) has been carried out using an automated impact hammer and 3D scanning laser vibrometer. st
- > Measurement setup:
 - 2450 measurement points on the caliper surface, exact match with FEA nodes => improved correlation accuracy
 - 16 eigenvectors have been extracted (up to 8 kHz)

Porsche Engineering driving technologies

2.2 Measurement and simulation setup

Simulation

- > FEM simulation respects the measurement setup.
- The steering knuckle is suppressed in all DOFs (123) at clamped faces.
- > The brake caliper is connected with the knuckle by MPC Isurface.
- > Bolted connection uses MPC Isurface as well.
- > Modal analysis up to 8.5 kHz:
 - 61 eigenvectors have been calculated
 - higher number of eigenvectors due to simulation of a complete assembly

Porsche Engineering driving technologies

3.1 Modal correlation

Initial results

- > MAC matrix is reduced only to the most correlated eigenmodes for every eigenmode from EMA.
- > The modal correlation shows globally low MAC values and high frequency differences.

-							
Meas	urement	Sim	Simulation		Δf		
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]		
1	976	7	970	0.97	-0.6		
2	1110	8	1136	0.95	2.3		
3	1671	10	1829	0.73	8.6		
4	2027	11	2106	0.76	3.8		
5	2758	15	2803	0.88	1.6		
6	3055	17	3199	0.73	4.5		
7	3171	16	2990	0.55	-5.7		
8	3574	20	3659	0.68	2.3		
9	3771	20	3659	0.66	-3.0		
10	4028	22	4023	0.82	-0.1		
11	4257	23	4328	0.83	1.6		
12	4458	24	4448	0.88	-0.2		
13	5405	30	5355	0.80	-0.9		
14	5778	34	5783	0.81	0.1	MAC	
15	7499	51	7539	0.93	0.5	WAC	0
16	7918	56	8052	0.68	1.7	Δf	-10

Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG

Porsche Engineering driving technologies

10%

3.2 Modal correlation

Updated model

- > Due to unacceptable results the parts used for experimental modal analysis have been properly examined and the simulation model has been updated.
- > Following properties have been updated:
 - Material properties (only slight change, initial values were close to measured quantities)
 - Boundary conditions the real clamping surface differed the expected surface, where the boundary conditions were applied

Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG

Porsche Engineering

3.3 Modal correlation

Comparison

> Although the updated model shows improvement in MAC values, the global correlation is still not satisfactory:

3.4 Modal correlation

Comparison

- > Frequency differences are still too high.
- > Most of the simulation eigenmodes have higher frequencies => Mounting too stiff?

Brake caliper - initial model					
Measurement		Simulation		MAC	Δf
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]
1	976	7	970	0.97	-0.6
2	1110	8	1136	0.95	2.3
3	1671	10	1829	0.73	8.6
4	2027	11	2106	0.76	3.8
5	2758	15	2803	0.88	1.6
6	3055	17	3199	0.73	4.5
7	3171	16	2990	0.55	-5.7
8	3574	20	3659	0.68	2.3
9	3771	20	3659	0.66	-3.0
10	4028	22	4023	0.82	-0.1
11	4257	23	4328	0.83	1.6
12	4458	24	4448	0.88	-0.2
13	5405	30	5355	0.80	-0.9
14	5778	34	5783	0.81	0.1
15	7499	51	7539	0.93	0.5
16	7918	56	8052	0.68	1.7

Brake caliper - updated model					
Meas	urement	Sim	ulation	MAC	Δf
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]
1	976	7	979	0.98	0.4
2	1110	8	1138	0.98	2.5
3	1671	10	1840	0.76	9.2
4	2027	11	2081	0.90	2.6
5	2758	15	2825	0.90	2.4
6	3055	17	3195	0.85	4.4
7	3171	18	3332	0.75	4.8
8	3574	20	3589	0.83	0.4
9	3771	21	3768	0.67	-0.1
10	4028	23	4226	0.84	4.7
11	4257	24	4340	0.72	1.9
12	4458	25	4462	0.98	0.1
13	5405	31	5400	0.85	-0.1
14	5778	35	5833	0.75	0.9
15	7499	53	7603	0.89	1.4
16	7918	58	8123	0.49	2.5

MAC	0	1
Δf	-10%	10%

Porsche Engineering

driving technologies

26.03.2018 - 10 -

Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG

4.1 Optimization of boundary conditions

Optimization setup

- > Mounting of the steering knuckle seems to be improperly modelled.
- > Absolutely rigid mounting cannot be created easily in the experiment.
- > Necessary to determine correct stiffness of the clamping device:
 - Modelling of the complete clamping device 🗶
 - Optimization of the spring stiffness coefficients \checkmark
- > Model description:
 - Rigid constraints were replaced by compliant springs
 - SPRING6 element, one end is suppressed, the other one is connected to the knuckle through MPC WIscon
 - Both springs have the same stiffness coefficients

 $k_{1,} k_{2,} k_{3,} k_{4,} k_{5,} k_{6}$

MPC

WLSCON

Ζ

 $k_{1,} k_{2,} k_{3,} k_{4,} k_{5,} k_{6}$

Porsche Engineering

Suppressed DOFs:

123456

4.2 Optimization of boundary conditions

Optimization setup

- > **Design variables:** $k_{1,} k_{2,} k_{3,} k_{4,} k_{5,} k_{6}$
- > **Design constraints:** 7 eigenfrequencies (picked eigenfreq. of sufficiently correlated modes)
- > **Objective function:** Sum of the quadratic relative differences between simulated eigenfrequencies and measured eigenfrequencies (design constraints)
 - Used library function, type 13

$$f(x_i; i = 1, n) = c_0 + \sum_{i=1}^n c_i x_i^2$$

- > **Design objective:** Finding a minimum of the objective function => to minimize frequency differences
- > **Optimization methods:** Sequential Quadratic Programming (SQP) and MultiStart (MS) method
- > Initial values of the design variables:
 - $k_1 = k_2 = k_3 = 5.0E + 5$ N/mm
 - $k_4 = k_5 = k_6 = 5.0E + 8 \text{ Nmm/rad}$

Porsche Engineering

4.3 Optimization of boundary conditions

Optimization results

> Tested two optimization algorithms – SQP and MS

- SQP calculation time ca. 13 min (15 iterations), 4 CPUs @ 3.3 GHz
- > Multi Start method terminated after 100 iterations
- > Optimum iterations: 13 (SQP) and 11 (MS)

Porsche Engineering

4.4 Optimization of boundary conditions

Optimized model results

- Screat improvement of the correlation through the complete frequency range.
- > MAC matrix almost diagonal.

4.5 Optimization of boundary conditions

Optimized model results

> Frequency differences below 2% through the complete frequency range

Brake caliper - updated model (rigid cons.)					
Meas	urement	Sim	Simulation		Δf
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]
1	976	7	979	0.98	0.4
2	1110	8	1138	0.98	2.5
3	1671	10	1840	0.76	9.2
4	2027	11	2081	0.90	2.6
5	2758	15	2825	0.90	2.4
6	3055	17	3195	0.85	4.4
7	3171	18	3332	0.75	4.8
8	3574	20	3589	0.83	0.4
9	3771	21	3768	0.67	-0.1
10	4028	23	4226	0.84	4.7
11	4257	24	4340	0.72	1.9
12	4458	25	4462	0.98	0.1
13	5405	31	5400	0.85	-0.1
14	5778	35	5833	0.75	0.9
15	7499	53	7603	0.89	1.4
16	7918	58	8123	0.49	2.5

0.82

Brake caliper - optimized model (SQP I13)					
Measurement		Sim	ulation	MAC	Δf
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]
1	976	7	957	0.99	-1.9
2	1110	8	1098	0.99	-1.0
3	1671	10	1687	0.97	0.9
4	2027	11	2017	0.96	-0.5
5	2758	15	2752	0.94	-0.2
6	3055	18	3050	0.89	-0.2
7	3171	19	3216	0.87	1.4
8	3574	21	3552	0.96	-0.6
9	3771	23	3830	0.93	1.5
10	4028	24	4060	0.92	0.8
11	4257	25	4255	0.95	0.0
12	4458	26	4403	0.95	-1.2
13	5405	33	5432	0.70	0.5
14	5778	37	5803	0.87	0.4
15	7499	55	7601	0.90	1.3
16	7918	58	7988	0.88	0.9

Average MAC 0.92

Brake caliper - optimized model (MS I11)						
Meas	Measurement		Simulation		Δf	
Mode1	f1 [Hz]	Mode2	f2 [Hz]	[-]	[%]	
1	976	7	957	0.98	-1.9	
2	1110	8	1106	0.99	-0.4	
3	1671	10	1654	0.98	-1.0	
4	2027	11	2032	0.91	0.2	
5	2758	15	2780	0.98	0.8	
6	3055	17	3048	0.97	-0.2	
7	3171	18	3236	0.93	2.0	
8	3574	21	3594	0.95	0.6	
9	3771	22	3821	0.87	1.3	
10	4028	23	4109	0.97	2.0	
11	4257	24	4251	0.84	-0.1	
12	4458	25	4375	0.90	-1.9	
13	5405	33	5402	0.88	-0.1	
14	5778	37	5816	0.84	0.6	
15	7499	55	7590	0.92	1.2	
16	7918	58	7991	0.72	0.9	

Average MAC

26.03.2018 - 15 -

Average MAC

Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG Porsche Engineering driving technologies

0.91

5.1 Modal shapes - selected

26.03.2018 - 16 - Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG

Porsche Engineering driving technologies

5.2 Modal shapes - selected

26.03.2018 -17Modal correlation of a brake caliper - boundary conditions optimization Z. Podzemny, P.E.S. / S. Carvajal, Porsche AG

6.1 Summary

- > Experimental model has to be properly examined for a correct correlation.
- > Discrepancy in the initial correlation results caused mainly by the boundary conditions definition.
- > Both optimization methods (SQP and MS) applicable.
- > Updated FEA model with correct material properties and optimized boundary conditions shows decent correlation results through the complete frequency range:

	Rigid cons.	Optimized cons.
Min. MAC	0.49	0.70
Max. MAX	0.98	0.99
Average MAC	0.82	0.92
Max. freq. difference	9.2 %	1.9 %

> Further development:

- Different mounting of the steering knuckle in order to define FEA boundary conditions more easily

