

Laminate optimization capabilities applied to a racing car monocoque

M.Kinscher, Porsche AG

C.Wulf, INTES GmbH

Introduction

- New application of optimization in PERMAS V17
- Development project initiated by Porsche Motorsport
- Two different phases of optimization:
 - STEP1: Optimization of ply shapes
 - STEP2: Optimization of ply stacks

STEP1: Optimization of ply shapes

- 'Super-Ply-Elements': Total thickness of plies with a specific orientation of fiber angles for *each element as* design variables
- 'Freesize' optimization similar to topology optimization,
 i.e. find new design concepts
- 'Freesize' optimization new option in PERMAS V16, extended for laminates in V17
- Basic manufacturing constraints, eg. balancing ±45° or total thickness of each 'Super-Ply'
- Using optimized thickness distributions of 'super-plies' for the generation of ply shapes as element sets

STEP2: Optimization of ply stacks

- Ply shapes of STEP1 as input for creation of new laminates (= ply stacks)
- Simplification and manufacturing considerations using engineering experience!
- Ply thicknesses (i.e. nr. of plies) and/or orientation angles of pre-defined laminates as design variables, hence reducing to 'classical' *sizing optimization* with moderate number of variables
- Incorporation of detailed manufacturing conditions and additional constraints e.g. ply failure criteria

5 ply stacks (=laminates) from simplified ply shapes

Monocoque model

 Laminates with core (unchanged) and several CFK plies on both sides:
 Core thickness : ∑ Ply thickness ~ 10 : 1
 Core weight : ∑Ply weight ~ 1 : 2

Design area ~ 75% (~ 110.000 Elements)

Weight of 'Designed Plies' ~ 50%

• 4 static load cases: Forces and a moment applied at the rear end (see next page)

Force z-direction

Moment x-direction

PERMAS Users' Conference, April 2018

STEP1: Optimization setup

INTES

- Design space with symmetric laminate and (super-)plies for 0°, 90°, $\pm 45^{\circ}$
- 3 design variables per element
 - 3 'layers' of \$DELEMENT TYPE = DTOPO
 - Explicitly balancing ±45° plies
- *Elementwise* (1 constraint per element!) restriction for sum of ply thicknesses
 - SDERESTRAINT TYPE=LAYER
- Assigning elemental design variables to ply properties:
 - \$DVTPAR KIND = PLY
- **Optimization Task:** Design constraints on displacements at loaded node for all load cases (limits from reference model) and minimization of weight

\$DEL	EMENT TYPI	Ξ =	DTOPO		
1	DSVSET1	:	FREESIZE	1	0
2	DSVSET2	:	FREESIZE	1	90
3	DSVSET3	:	FREESIZE	1	+/-45

```
$DESET NAME = SP_ALL
  & SEQUENCE = ORDERED
  1 2 3
$DERESTRAINT TYPE = LAYER
  SP_ALL 101 UPPER = 1.0
$FUNCTION LIB FID = 101 TYPE = 12
  0.0 1.0 1.0 2.0
```

```
$DVTPAR DEID = 1 KIND = PLY
MAT_7 1 1 ! 0
$DVTPAR DEID = 2 KIND = PLY
MAT_7 3 1 ! 90
$DVTPAR DEID = 3 KIND = PLY
MAT_7 2 1 ! +45
MAT_7 4 1 ! -45
```


STEP1: Results

- Convergence after 4 iterations
- Equal thickness distribution for 0° and 90°
- $\pm 45^{\circ}$ and $0^{\circ}/90^{\circ}$ thicknesses alternate
 - Important role of max. total thickness restraint
- All displacement constraints fulfilled
- Weight minimization:

Total weight	-4.2%
Design area	-5.9%
Plies in design area	-8.9%

108

106

SIH2 104

102

100

STEP1: Post-processing

- Goal: Divide design area in different regions with similar properties to define new laminates
- Use of elemental thickness result values in any postprocessing tool, e.g. VisPER
- PERMAS UCI-command TOOL8 for simple ruled set generation
- Engineering experience and manufacturing considerations
 essential!
- Here: Simple distinction between 0°/90°- and ±45°-dominated areas and rough transformation into 2x3 design regions:

DE1, DE3, DE5: 0°/90° dominated areas

DE2, DE4, DE6: ±45° dominated areas

STEP2: Optimization setup

- Symmetric laminate and plies for 0°, 90°, ±45°
 - 1 Designelement with 3 variables for 0°, 90° and ±45° for each design region
 - Explicitly balancing ±45° plies
- Assigning elemental design variables to ply properties by
 - SDVMPAR
- Restriction for sum of ply thicknesses with upper and lower bound for each design region by
 - **\$DCFUNCTION**

representing a minimum and maximum nr. of plies

• **Optimization Task:** Displacement constraints and minimization of weight as in STEP1

\$DELEMENT			TYPE	=	DQUAD4		
1	11	12	13		:	DE1	
2	21	22	23		:	DE2	
3	31	32	33		:	DE3	
4	41	42	43		:	DE4	
5	51	52	53		:	DE5	
6	61	62	63		:	DE6	

\$DVM	PAR NAME	=	MAT_DE1	MODE	= S(CALE	
PLY	MAT_7	1	1 :	1.0	:	11	
PLY	MAT_7	3	1 :	1.0	:	12	
PLY	MAT_7	2	1 :	1.0	:	13	
PLY	MAT_7	4	1 :	1.0	:	13	

```
$DCFUNCTION CSTID = T_DE1 FUNCTION = 101
   & LOWER = ... UPPER = ...
1 DESVAR : 11
2 DESVAR : 12
3 DESVAR : 13
$DCFUNCTION CSTID = T_DE2 FUNCTION = 101
   & LOWER = ... UPPER = ...
...
```


STEP2: Results

STEP2: Results

Convergence achieved after 8 iterations

• Weight minimization:

	STEP1	STEP2		
Total weight	-4.2%	-2.3%		
Design area	-5.9%	-3.2%		
Plies in design area	-8.9%	-4.8%		

 \rightarrow Still slightly reducing, but of course less than STEP1

• Plyfailure criterion HOFFMANN of reference model (Failure exposure loadcase 3)

STEP2: Ply failure minimization

- Displacement and weight constraints with limits from reference model
- Minimization of max. failure exposure for loadcase 3
 - reduced failure exposure by ~11%
 - significiant differences in ply thicknesses

\$DCONSTRAINT	PL	YFAI]	LURE	TYPE =	DMODE	CL	
& SITUAT	ION	= S	ITUAT	'ION_1	LPAT	= 3	
PF_L3_1	:	1	no	1.0			
PF_L3_2	:	2	no	1.0			
PF_L3_3	:	3	no	1.0			
PF_L3_4	:	4	no	1.0			
PF_L3_6	:	6	no	1.0			
PF_L3_7	:	7	no	1.0			
PF_L3_8	:	8	no	1.0			
PF_L3_9	:	9	no	1.0			
\$DOBJECT CON	STRA	AINT	= PF	_L3_1 P	[•] F_L3_	_2 PF_	_L3_
& PF_L3_4	PF_]	_3_6	PF_L	3_7 PF_	_L3_8	PF_L3	3_9

Displaceme

Ply failure minimization: Results

Distinction between 0°/90° and ±45° regions much smaller!

- A basic procedure to design laminates has been presented for the example of a racing car monocoque. This procedure consists of two steps:
 - > STEP1: 'Freesize' for the generation of ply shapes, hence appropriate design regions for the second step
 - > STEP2: Classical 'Sizing' for optimizing the ply stacks of pre-defined laminates
- In both steps, various additional restrictions such as balancing different fiber orientations or restricting total thicknesses can be incorporated
- Even though a very simple approach to transfer results from STEP1 at least similar results (w.r.t weight and stiffness) compared to an existing reference monocoque could be achieved
- Failure exposure could be minimized in alternative optimization setup (while weight and stiffness stay the same)
 - > Major impact on optimized design

- Evaluation of new laminate optimization capabilities is a still ongoing process. This includes to
 - exploit fiber angles as additional degrees of freedom for optimization
 - > generate more sophisticated and detailed realization of ply shapes from STEP1 results
 - examine the effect of approximating STEP2 results with discrete number of plies
- Likewise development of optimization methods and related software tools is not yet terminated. Future work could consider
 - > the incorporation of additional analysis responses, e.g. buckling loads
 - improved methods for the automatic generation of appropriate ply shapes and their reuse
 - > the design and implementation of GUI support for optimization setup and evaluation
 - > the ability of optimization algorithms to treat discrete variables

Thank you for your attention!

PERMAS Users' Conference, April 2018